Wage Rate and Growth

lfs_toronto = labourforce.dataframe(cma="Toronto")

Wage increase over the COVID pandemic

industries = ['all', 'retail', 'construction', 'finance']

(fig, axes) = pl.subplots(len(industries), 1, figsize=(10, 5 * len(industries)), constrained_layout=True)

for (i, industry) in enumerate(industries):
    df = wage_by_industry(industry)
    plot1(df, axes[i], industry)
_images/wage_6_0.png

Wage increase by industries

df = lfs_toronto[['date', 'naics_21', 'hrlyearn']].dropna()
df = df.groupby(['date', 'naics_21']).mean().reset_index().set_index('date')
df = df.pivot(columns='naics_21').rolling(5).mean().iloc[4:].transpose()
df = df[['2019-10-01', '2021-10-01']]
df.columns = ['pre', 'post']
df['increase'] = (df['post'] / df['pre'] - 1.)*100
df.sort_values(by='increase', inplace=True)
df = df.reset_index(level=0, drop=True)
df.index.name = 'Industry'
df.dropna(inplace=True)
df
pre post increase
Industry
Mining, quarrying, and oil and gas extraction 45.985700 40.559167 -11.800480
Real estate and rental and leasing 26.998493 26.756227 -0.897332
Agriculture 23.157450 23.344000 0.805572
Health care and social assistance 28.854486 29.658342 2.785897
Public administration 39.068808 40.230837 2.974313
Retail trade 21.743701 22.518379 3.562772
Manufacturing - durable goods 29.341269 30.597574 4.281700
Construction 32.175108 33.720906 4.804328
Accommodation and food services 17.456831 18.529793 6.146369
Business, building and other support services 23.073824 24.530739 6.314146
Professional, scientific and technical services 36.146100 38.708048 7.087758
Manufacturing - non-durable goods 26.684284 29.536928 10.690351
Educational services 35.121274 39.072096 11.249085
Wholesale trade 29.159620 32.508170 11.483517
Finance and insurance 37.979653 42.449050 11.767872
Information, culture and recreation 28.247628 32.716910 15.821797
Other services (except public administration) 24.083483 28.405582 17.946321
Transportation and warehousing 25.966828 32.211410 24.048305
Utilities 39.799617 52.341370 31.512246
s = df['increase']
color = pd.Series('', index=df.index)
color[s < 0] = 'red'
color[s >=0] = 'blue'
pl.figure(figsize=(10, 5))
ax = pl.gca()
df.increase.plot.bar(ax=ax, color=color);
_images/wage_9_0.png