Retail¶
The Monthly Retail Trade Survey¶
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=2406
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=2010001701
The following is the attributes collected by the retail trade survey.
retail.query("select * from data limit 10").iloc[0]
date REF_DATE
geo GEO
dguid DGUID
classification North American Product Classification System (NAPCS) Canada 2017 Version
UOM UOM
UOM_ID UOM_ID
scalar_factor SCALAR_FACTOR
scalar_id SCALAR_ID
vector VECTOR
coordinate COORDINATE
value VALUE
status STATUS
symbol SYMBOL
terminated TERMINATED
decimals DECIMALS
Name: 0, dtype: object
The following is the national retail activity from June 2020 to August 2021.
df = retail_sales.groupby('date').value.sum().rolling(5).mean().iloc[4:]
df = df / df['2019-10-01'] * 100
retail_rel = df
retail_rel.plot.line();
pl.title('National level retail activity');
Retail Labour Force Survey¶
We are able to use the labour force survey to obtain insight into the retail activity in Toronto area.
We assume that the employment in the retail industry is strongly correlated to the retail activity.
lfs = labourforce.dataframe(cma="Toronto")
The following is the plot of the unemployment rate in the retail industry in Toronto area from June 2020 to October 2021.
#
# unemployment rate
#
df = lfs[['date', 'lfsstat']].groupby(['date', 'lfsstat']).size()
df = df.reset_index(level=1).pivot(columns='lfsstat')
df.columns = [x[-1] for x in df.columns.values]
df = df['Unemployed'] / df.sum(axis=1) * 100
df = df.rolling(5).mean().iloc[4:]
unemploy_rel = df / df['2019-10-01'] * 100
unemploy_rel.plot.line();
pl.title('Unemployment rate of retail in Toronto');
We can compare the trends of retail unemployment rate in Toronto with the national retail activity.
fig, ax = pl.subplots(figsize=(10, 5))
ax2 = ax.twinx()
ax.set_ylabel('Unemployment (relative)')
ax2.set_ylabel('National retail sales')
unemploy_rel.plot.line(ax=ax, label='Unemployment');
ax.legend(['Toronto Retail Unemployment']);
retail_rel.plot.line(ax=ax2, style='--', color='gray');
ax2.legend(['National Retail']);
Next we correlate the duration of employement in the retail industry in Toronto with the national retail activity.
fig, ax = pl.subplots(figsize=(10, 5))
ax2 = ax.twinx()
ax.set_ylabel('Unemployment Duration (months)')
ax2.set_ylabel('National retail sales')
dur_unemp.plot.line(ax=ax, label='Unemployment');
retail_rel.plot.line(ax=ax2, style='--', color='gray');
pl.title('Unemployment Duration vs Retail Activity');
Finally, we correlate the retail hourly earning in the retail industry in Toronto with the national retail activities.
fig, ax = pl.subplots(figsize=(10, 5))
ax2 = ax.twinx()
ax.set_ylabel('Salary (hourly)')
ax2.set_ylabel('National retail sales')
hrlyearn.plot.line(ax=ax, label='Unemployment');
retail_rel.plot.line(ax=ax2, style='--', color='gray');